Selective *endo***-Calix Complexation of Linear Alkylammonium Cations by Functionalized (1,3)-***p-tert***-Butylcalix[5]crown Ethers**

Sebastiano Pappalardo*,† and Melchiorre F. Parisi‡

Dipartimento di Scienze Chimiche, Universita` *di Catania, Viale A. Doria 6, I-95125 Catania, Italy, and Dipartimento di Chimica Organica e Biologica, Universita*` *di Messina, Salita Sperone 31, I-98166 Vill. S. Agata, Messina, Italy*

Received August 5, 1996

Synthetic host molecules having neutral organic cavities capable of accommodating molecular guests are of current interest as a structural basis for constructing synzymes.¹ Calixarenes have been widely used as threedimensional molecular platforms for the construction of ionophores and carriers with specific properties.² Although calixarenes are able to form inclusion complexes with several organic neutral guest molecules in the solid state, evidence for host-guest complexes in solution is very limited.²

Here we report the synthesis of (1,3)-*p-tert*-butylcalix- [5]crown-6 derivatives **2a**-**f** in a conelike conformation, and the ability of **2c**-**f** to selectively form 1:1 *endo-calix complexes* with linear primary alkylammonium cations. This is, to the best of our knowledge, the first direct evidence for *endo*-calix complexes in solution.3

By using a slight modification of Böhmer's procedure,⁴ *p-tert*-butylcalix[5]arene (**1**)5 was reacted with penta- (ethylene glycol) ditosylate or 2,2′-bis[2-[(toluene-*p*-sulfonyl)ethoxylethoxyl-1,1′-binaphthalene⁶ and CsF in dry MeCN to afford regioselectively (1,3)-crown-6-2,4,5-triol derivatives **2a** (65%)4 and **2b** (72%), respectively, which were in turn subjected to exhaustive alkylation with an excess of $CH₃I/NaH$ in THF or PicCl $CHCl/K₂CO₃$ in DMF, to give triether derivatives **2c** (85%)4 and **2d** (80%), **2e** (68%) and **2f** (64%), respectively (Scheme 1).7

The overall cone conformation for all new compounds is corroborated by their NMR spectra, showing the $ArCH₂Ar$ protons as three pairs of doublets in the ratio 2:2:1 (five pairs of doublets in the ratio 1:1:1:1:1 for racemic 2,2′-binaphthyl derivatives **2b**, **2d**, and **2f**) with a ∆*δ* separation between geminal protons around 1 ppm and the pertinent methylene carbon resonances in the range 29.2 ± 1.5 ppm.^{8,9} The high-field resonances of

Table 1. Shieldings Observed for *n***-BuNH3** + **Guest upon** *endo***-Cavity Complexation with Calix[5]arene Hosts 2***^a*-*^c*

host	α -CH ₂	β -CH ₂	γ -CH ₂	CH ₃
2c	3.86	3.29	1.94	1.19
2d	3.87	3.33	1.99	1.22
2e	3.26	3.54	2.56	1.59
2f	3.67	3.62	2.44	1.51

^a In CDCl3-CD3OD (9:1, v/v). *^b* ∆*δ* shieldings (ppm) were calculated as the difference between the resonances of pertinent protons of free and complexed guest. *^c* Assignments of signals to the respective protons follow from decoupling experiments.

methoxy groups in trimethyl ether derivatives **2c,d** (*δ* in the range 1.99-2.93 ppm) are suggestive of a *coneout* conformation (with methoxy groups pointing into the ring cavity and relevant *p-tert*-butyl substituents directed away from it). Conversely, tripicolyl derivatives **2e,f** adopt preferentially a *cone-in* conformation, with the *p-tert*-butylphenyl moiety bearing the "isolated" picolyloxy substituent canted inward in the calix cavity, as substantiated by the upfield resonances of the *tert*-butyl and aryl protons [*δ* 0.49 and 6.31 ppm in **2e**, and 0.42, 6.21 and 6.28 (ABq, $J = 2.3$ Hz) ppm in **2f**, respectively].

(1,3)-Calix[5]crown ethers **2** are potentially heteroditopic receptors, since they combine both a hydrophilic crown ether pocket at the lower rim and a preorganized hydrophobic cone cavity on the opposite side, the latter being well suited for cation $-\pi$ interactions. In order to prove complementary host-guest interactions and determine the preferred binding sites, 1H NMR titration experiments of 2 with $(C_3$ and C_4) RNH₃⁺ picrate salts (up to 2 equiv) were carried out in $CDCl₃-CD₃OD$ (9:1, v/v) by following the spectral changes upon addition of increasing amounts of salt. Our results seem to indicate that the complexation mode and binding geometry of $RNH₃⁺$ by 2 is strongly affected both by the steric encumbrance of substituents at the lower rim and by the shape of the guest cation. For instance, the less hindered compound **2a**, with free OH groups, complexes *n*-PrNH3 +, n -BuNH₃⁺, and *i*-BuNH₃⁺ (but not *i*-PrNH₃⁺, *s*-BuNH₃⁺, or *t*-BuNH3 ⁺), probably *via* hydrogen bonding(s) of the $-NH₃⁺$ head with the crown-6 moiety,¹⁰ without apparent selectivity. However, when the OH groups are replaced by the bulkier alkoxy groups (compds **2c**-**f**), no interaction at all occurs with the branched (C₃ and C₄) RNH_{3}^{+} cations, while unprecedented *endo-cavity complexation* is observed with the linear guest cations. This is unambiguously supported by the dramatic upfield shifts (∆*δ* up to 3.87 ppm) experienced by the resonances of the cavity-included *n*-alkyl chain (see Table 1 for the complexation of *n*-BuNH₃⁺). Further evidence for host–guest interactions with our systems was provided by the ^{13}C NMR spectrum of **2e**⊂*n*-BuNH3 + *endo*-complex (obtained by treating **2e** with 20 equiv of picrate salt; see the Supporting Information).

Typical 1H NMR spectra of receptor **2c**, without and with 1 equiv amount of $n\text{-}\mathrm{BuNH_3}^+$ picrate, are shown in Figure 1. The free host and *endo*-cavity complex exchange slowly in the NMR time scale, as shown by the presence in the spectra of distinct signals for the free and complexed species. Consequently, the 1:1 host-guest stoichiometry and association constants (K_{assoc}) for the formation of the *endo*-complexes could be deduced by direct 1H NMR analysis from the peak intensity ratio of equimolar solutions (ca. 5×10^{-3} M) of host and guest in

[†] Dipartimento di Scienze Chimiche, Universita` di Catania.

[‡] Dipartimento di Chimica Organica e Biologica, Universita` di Messina.

⁽¹⁾ Diederich, F. *Cyclophanes*; Royal Society of Chemistry: Cambridge, 1991.

⁽²⁾ Gutsche, C. D. *Calixarenes*; Stoddart, J. F., Ed.; Monographs in Supramolecular Chemistry; The Royal Society of Chemistry: Cambridge, 1989; Vol. 1. *Calixarenes, a Versatile Class of Macrocyclic*
Compounds; Vicens, J., Böhmer, V., Eds.; Kluwer: Dordrecht, 1991. Bo¨hmer, V. *Angew. Chem., Int. Ed. Engl*. **1995**, *34*, 713.

⁽³⁾ Previously, Gutsche *et al.* postulated the formation of an *endo*complex, from the interaction of *p*-allylcalix[4]arene with *t*-BuNH2, on the basis of a 2D NOE spectrum: Gutsche, C. D.; Iqbal, M.; Alam, I. *J. Am. Chem. Soc*. **1987**, *109*, 4314.

⁽⁴⁾ Kraft, D.; Arnecke, R.; Bo¨hmer, V.; Vogt, W. *Tetrahedron* **1993**, *49*, 6019.

⁽⁵⁾ Stewart, D. R.; Gutsche, C. D. *Org. Prep. Proc. Int*. **1993**, *25*, 137.

⁽⁶⁾ Kyba, E. P.; Gokel, G. W.; de Jong, F.; Koga, K.; Sousa, L. R.; Siegel, M. G.; Kaplan, L.; Sogah, G. D. Y.; Cram, D. J. *J. Org. Chem*. **1977**, *42*, 4173.

⁽⁷⁾ Experimental procedures and characterization data for all new compounds are shown in the Supporting Information.

⁽⁸⁾ Stewart, D. R.; Krawiec, M.; Kashyap, R. P.; Watson, W. H.; Gutsche, C. D. *J. Am. Chem. Soc*. **1995**, *117*, 586. (9) Jaime, C.; de Mendoza, J.; Prados, P.; Nieto, P. M.; Sanchez, C.

J. Org. Chem. **1991**, *56*, 3372.

⁽¹⁰⁾ Lehn, J.-M. *Angew. Chem., Int. Ed. Engl*. **1988**, *27*, 89. Cram, D. J. *Angew. Chem., Int. Ed. Engl*. **1988**, *27*, 1009.

Figure 1. Endo-calix complexation of n-BuNH₃⁺ cation by calix[5]crown ether 2c. ¹H NMR spectrum (300 MHz, CDCl₃–CD₃OD 9:1, 293 K) of (A) the free host and (B) spectral changes after addition of 1 equiv of picrate salt.

the stated solvent mixture. The K_{assoc} at 293 K for the *endo*-calix complexation of *n*-BuNH3 + with **2c**-**f** are 86, 65, 83,¹¹ and 48 M^{-1} , respectively.

The unique ability of compounds **2c**-**f** to discriminate between linear and branched primary alkylammonium cations can be ascribed to a remarkable steric and electronic complementarity between the preorganized *π*-rich hydrophobic cavity of the calix[5]arene skeleton and the shape of the guests. It seems reasonable to assume that other noncovalent interactions, including hydrogen bonding between the cavity-included $-\mathrm{NH_3}^3$ head and the ethereal oxygen(s) and/or pyridine nitrogen- (s) of the host, may contribute to the stabilization of these

endo-complexes, whereas the presence of *tert-*butyl substituents at the upper rim, which sterically interfere with the branched alkylammonium guests, may favor selectivity. These results are interesting because no calixarene derivative exhibiting such an enzyme-like specificity for *n*-BuNH3 + over other butylammonium cations has been reported so far, even though a number of calixarene-type host molecules for butylammonium recognition have been synthesized.¹³

An estimate of how deeply the *n*-BuNH₃⁺ cation is accommodated into the cavity of calix[5]arene derivatives **2** can be deduced from the observed shieldings for the included *n*-butyl chain (Table 1). A scrutiny of Table 1 reveals that the most effective shieldings for *γ*-methylene protons ($\Delta \delta \sim 2.4-2.6$ ppm) are observed for crown ether derivatives $2e, f$ carrying α -picolyl pendant groups. This may imply that the $\check-\mathrm{NH}_3^+$ head of the cation penetrates the cavity more deeply, because of additional hydrogen bonding with the pyridine ring nitrogen(s).

Further elaboration of calix[5]arene-based hosts and their molecular recognition properties toward biologically active alkylammonium guests are currently being investigated.

Acknowledgment. We thank Dr. F. Arnaud (ECPM-CNRS, Strasbourg) for pK_a measurements on compound **2e**, and MURST for financial support of this work.

Supporting Information Available: Experimental procedures and characterization data for all new compounds, ¹H NMR spectra of equimolar solution of hosts **2d**-**2f** and *n*-BuNH3 + picrate, and the 13C NMR spectrum of **2e**⊂*n*-BuNH3 + *endo*-complex (9 pages).

JO9615108

⁽¹¹⁾ The 1H NMR spectra of equimolar amounts of **2e** and *n*-BuNH3 + showed the presence of additional signals of low intensity, which were assigned to protonated host (∼10%) by comparison with the spectrum obtained after protonation of 2e with TFA. The enhanced basicity¹² of the "isolated" picolyl substituent, which is almost completely proto-nated even by 1 equiv of L-Phe-OMe'HCl, is believed to be associated with the juxtaposition of the polyether bridge that stabilizes the pyridinium cation by self-complexation. Subsequent to protonation, compound **2e** assumes a more open cone conformation, as suggested by the resonance of the "isolated" *p-tert*-butyl substituent, which is shifted downfield (∆*δ* 0.95 ppm).

⁽¹²⁾ Preliminary results of the acid-base behavior of **2e** (L) in MeOH have shown the following log *K* of protonation: $\log K_1$ (L + H+ $= LH^{+}$) = 8.6; log K_2 (LH⁺ + H⁺ = LH₂²⁺) = 4.1; log K_3 (LH₂²⁺ + H⁺
= LH₃³⁺) = 3.3.

⁽¹³⁾ Araki, K.; Hashimoto, N.; Otsuka, H.; Shinkai, S. *J. Org. Chem*. **1993,** *58*, 5958. Han, S.-Y.; Kang, M.-H.; Jung, Y.-E.; Chang, S.-K. *J. Chem. Soc., Perkin Trans. 2* **1994**, 835. Kubo, Y.; Maruyama, S.; Ohhara, N.; Nakamura, M.; Tokita, S. *J. Chem. Soc., Chem. Commun*. **1995**, 1727 and references cited therein.